Evidence for solvent-induced conformational changes of the soluble *Dunaliella* chloroplast coupling factor 1 (CF₁)

Susanne Selman-Reimer and Bruce R. Selman*

Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA

Received 26 March 1984

The ATPase activity of the chloroplast coupling factor 1 (CF₁) isolated from the green alga *Dunaliella* is completely latent. A brief heat treatment irreversibly induces a Ca²⁺-dependent activity. The Ca²⁺-dependent ATPase activity can be reversibly inhibited by ethanol, which changes the divalent cation dependency from Ca²⁺ to Mg²⁺. Both the Ca²⁺-dependent and Mg²⁺-dependent ATPase activities of heat-treated *Dunaliella* CF₁ are inhibited by monospecific antisera directed against *Chlamydomonas reinhardi* CF₁. However, when assayed under identical conditions, the Ca²⁺-dependent ATPase activity is significantly more sensitive to inhibition by the antisera than is the Mg²⁺-dependent activity. These data are interpreted as indicating that soluble *Dunaliella* CF₁ can exist in a variety of conformations, at least one of which catalyzes a Ca²⁺-dependent ATPase and two or more of which catalyze an Mg²⁺-dependent ATPase.

Coupling factor 1

ATPase

Dunaliella

Antiserum

Heat-activation

1. INTRODUCTION

The reversible energy-transducing ATP synthase complex associated with chloroplast thylakoid membranes can be functionally divided into two parts: an integral membrane sector (CF₀), whose function is to conduct protons across the membrane, and an extrinsic membrane sector (CF₁), which contains the active site(s) for ATP synthesis. A number of treatments can be employed to dissociate the CF₁ portion of the complex from the thylakoid membrane, but in most cases the solubilized protein is devoid of catalytic activity [1,2]. The ATPase activity of the isolated protein can usually be markedly enhanced by proteolytic digestion [3], incubation of the enzyme in relative-

* To whom correspondence should be addressed

Abbreviation: CF₁, chloroplast coupling factor 1

ly high concentrations of a low potential reductant [4] or detergent [5], or brief heat treatment [6]. These treatments invariably induce a Ca²⁺-dependent ATP-ase activity. An Mg²⁺-dependent ATP-ase activity can sometimes be observed by choosing appropriate buffers [7] or the inclusion of either detergents [5] or selected organic solvents [8] directly in the reaction mixture. The effect of solvents on the latent Mg²⁺-dependent ATPase activity of CF₁ has been shown to be completely reversible [9].

Recently, we described the preparation and properties of a 4-subunit CF₁ isolated from the halotolerant green alga *Dunaliella bardawil* [10]. Similar to higher (vascular) plant coupling factors, the ATPase activity of *Dunaliella* CF₁ was completely latent. The ATPase activity could, however, be expressed either by a short heat treatment, which irreversibly induced a calcium-dependent ATPase, or selected organic solvents (most effectively ethanol), which reversibly induc-

ed a magnesium-dependent ATPase. Although both activities were equally sensitive to most inhibitors tested [11], one notable exception was glycerol. (Glycerol is the osmoticum accumulated by Dunaliella when cultured in high concentrations of NaCl [12].) Glycerol, at concentrations up to 25% (v/v), had virtually no effect on the solventinduced, Mg2+-dependent Dunaliella CF1 ATPase activity, whereas the heat-induced, Ca2+-dependent activity was inhibited 50% by about 7% (v/v) glycerol. From these results and solvent titration curves, we concluded that both the calcium- and magnesium-dependent ATPase activities of Dunaliella CF₁ were mutually exclusive, and we suggested that these activities were an expression of different conformational states of the enzyme [10].

Here, we present immunological evidence which supports the suggestion that the Mg²⁺-dependent and Ca²⁺-dependent ATPase activities of Dunaliella CF₁ indeed represent different conformational states of the enzyme. We also demonstrate that, even though heat-treated Dunaliella CF₁ is irreversibly activated as a Ca²⁺-dependent ATPase, ethanol inhibits the heat-activated, Ca²⁺-dependent activity but concomitantly induces a reversible Mg²⁺-dependent ATPase. These results will be discussed in terms of a simple model which attempts to rationalize the changes in metal dependency with changes in enzyme conformation.

2. MATERIALS AND METHODS

The 4-subunit (δ -less) CF₁ was isolated and purified from either *D. bardawil* or *D. salina* and assayed for either Ca²⁺-dependent or Mg²⁺-dependent ATPase activity as in [10]. Note that one unit of activity is defined as the amount of ATP hydrolyzed (μ mol) per min at 37°C.

Rabbit non-immune sera and monospecific antisera directed against the 4-subunit CF₁ from Chlamydomonas reinhardi were generous gifts from Dr Sabeeha Merchant (Department of Biochemistry, University of Wisconsin, Madison, WI). Dunaliella strains were generously supplied by Professor Mordhay Avron, Weizmann Institute of Science, Rehovot, Israel. All other reagents were of analytical grade or better.

3. RESULTS

3.1. The relationship between the Ca²⁺-dependent and Mg²⁺-dependent ATPase activities of heat-treated Dunaliella CF₁

Heating a solution of Dunaliella CF₁ (0.5-2.5 mg protein/ml) for a short time (3 min) at 60°C in the presence of both ATP (5 mM) and dithiothreitol (5 mM) induces a Ca2+-dependent ATPase activity, as described [10]. This activity, however, is very sensitive to the presence of organic solvents in the reaction mixture and, as summarized in table 1, 50% of the Ca²⁺-dependent ATPase activity is inhibited by less than 15% (v/v) ethanol. By 20% (v/v) ethanol, the Ca²⁺-dependent activity is completely inhibited. On the other hand, as the concentration of ethanol in the reaction mixture increases, an Mg2+-dependent ATPase activity of heat-treated Dunaliella CF1 is induced. The induced activity is half maximal at about 15% (v/v) ethanol and maximal at 23% (v/v). Above 23% (v/v) ethanol, the activity of the enzyme rapidly declines, probably because of thermal inactivation at the reaction temperature (not shown). The ethanol titration curve for the induc-

Table 1

The ethanol sensitivity of the calcium and magnesium ATPase activities of heat-treated Dunaliella CF₁

% Ethanol (v/v)	ATPase activity (% of maximum)		
	Ca ²⁺	Mg ²⁺	
0	100ª	4	
5	100	4	
10	100	9	
15	33	48	
20	7	97	
23	0	100 ^b	

^a Control rate, 3.5 units/mg protein

Dunaliella bardawil CF₁ was isolated and heat-treated as in [10]. Reaction mixtures contained, in 0.1 ml, 40 mM Tricine-NaOH (pH 8.0), 1.0 mM EDTA, 5 mM $[\gamma^{-32}P]ATP$, 0.5 μg protein, either 6.0 mM MgCl₂ or CaCl₂, and the indicated amount of ethanol. Reaction mixtures were incubated at 37°C for 2 min. Thereafter, the reactions were stopped, and the mixtures were analyzed for $^{32}P_i$ as in [9]

^b Control rate, 12.8 units/mg protein

tion of an Mg²⁺-dependent ATPase activity with heat-treated *Dunaliella* CF₁ is virtually identical to the curve obtained for the latent enzyme (not shown). Thus, the heat-treated enzyme either has Ca²⁺-dependent (in the absence of solvents) or Mg²⁺-dependent (in the presence of solvents) ATP-ase activity, but not both.

Table 2 demonstrates that the effect of ethanol on the induction of an Mg2+-dependent ATPase activity with heat-treated Dunaliella CF1 is completely reversible (cf. lines 2 and 3; rows 2 and 3). Removal of ethanol from the enzyme (by dilution) returns the rate of the Mg²⁺-dependent ATPase back to its basal level, which can again be stimulated by the addition of ethanol to the reaction mixture. In contrast, the Ca2+-dependent ATPase activity of the heat-treated enzyme which is inhibited by ethanol, is completely restored upon the removal of the solvent (cf. lines 2 and 3; row 1). Thus, the effects of solvents on the Dunaliella CF₁ are completely reversible, regardless of whether the latent or heat-treated proteins are exposed.

3.2. Sensitivity of the Ca^{2+} - and Mg^{2+} -dependent ATPase activities of Dunaliella CF_I to antisera directed against CF_I

Fig.1 shows antiserum titration curves for the inhibition of the ethanol-induced, Mg²⁺-dependent

Table 2

Contrasting effects of heat and ethanol on the induction of *Dunaliella* CF₁ ATPase activities

Treatment	Units/mg CF ₁			
	Ca ²⁺	Mg ²⁺		
		- Ethanol	+ Ethanol (25%)	
None	0.3	0.2	18.2	
Heat	8.8	0.8	27.0	
Heat + ethanol	6.1	0.6	18.6	

Dunaliella bardawil CF₁ was isolated, purified and, where indicated, heat-treated as in [10]. Assay conditions were as in table 1. After both heat treatment (60°C for 3 min) and ethanol treatment (37°C for 5 min; 25%, v/v) (line 3) the ethanol was removed by dilution. When present, ethanol was added to a final concentration of 25% (v/v)

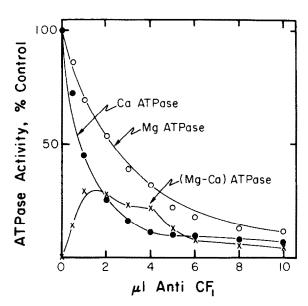


Fig. 1. Differential inhibition by an anti (C. reinhardi) CF_1 antiserum of the Dunaliella bardawil CF_1 Ca^{2+} - and Mg^{2+} -dependent ATPase activities. The D. bardawil CF_1 was isolated, purified, and assayed as in [10]. The Ca^{2+} -dependent activity was measured after heat activation of the protein whereas the Mg^{2+} -dependent activity was determined by the addition of ethanol (25%, v/v) to reaction mixtures containing the latent enzyme. Where indicated, addition of antiserum was made prior to the start of the ATPase assay. Assay conditions were as in table 1. Rates have been corrected by the addition of non-immune sera. Control rates were 25.9 and 9.7 units/mg protein for the Mg^{2+} - and Ca^{2+} -dependent activities, respectively.

ATPase activity of the latent CF₁ and the Ca²⁺-dependent ATPase activity of the heattreated enzyme. Although both activities of *Dunaliella* CF₁ are inhibited by the anti (*C. reinhardi*) CF₁ antiserum, clearly the Ca²⁺-dependent ATPase activity of the heat-treated enzyme is more sensitive to the antiserum than is the Mg²⁺-dependent ATPase activity of the latent enzyme. Similar results have been obtained using several different monospecific antisera directed against the *C. reinhardi* CF₁ (not shown).

Although the above results might suggest that the antisera recognize different conformational states of the *Dunaliella* CF_I as influenced by the presence or absence of ethanol, the reaction conditions used to assay the different metal-dependent activities are quite different, and it might be

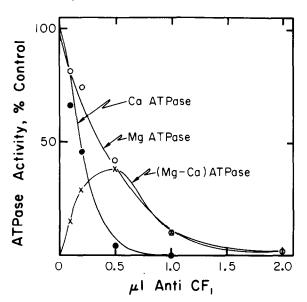


Fig.2. Differential inhibition by an anti (C. reinhardi) CF₁ antiserum of the heat-treated Dunaliella salina CF₁ Ca²⁺- and Mg²⁺-dependent ATPase activities. Assay conditions were as in fig.1 except that prior to both assays the enzyme was neat-treated. Note that the antiserum preparation used for the experiment in fig.2 was not the same as that used for fig.1. Control rates were 31.9 and 2.8 units/mg protein for the Mg²⁺- and Ca²⁺-dependent ATPase activities, respectively.

argued that these conditions could influence the interaction between the antigen and antisera. To circumvent this problem, the heat-treated enzyme was assayed under conditions where neither the Ca²⁺-dependent activity was completely inhibited by ethanol nor the Mg²⁺-dependent activity fully induced, i.e., in the presence of 15% (v/v) ethanol (see table 1). Thus, the effect of the antisera on the different metal-dependent ATPase activities could be directly compared under identical, albeit suboptimal, reaction conditions. These results are shown in fig.2, and are qualitatively identical to those shown in fig.1; i.e., the Ca²⁺-dependent ATPase activity is more sensitive to inhibition by the anti (C. reinhardi) CF₁ antiserum than is the Mg²⁺-dependent activity. Similar results have been obtained with other antisera preparations (not shown).

4. DISCUSSION

We have shown that the solvent-induced, Mg²⁺-dependent ATPase activity of both the latent

C. reinhardi CF₁ [9] and D. bardawil CF₁ [10] is completely reversible. In the case of C. reinhardi CF₁, however, we have as yet been unable to induce any substantial Ca2+-dependent ATPase activity. The D. bardawil enzyme does have a Ca²⁺-dependent ATPase activity if it is heated for a short time in the presence of both ATP and dithiothreitol. In this respect, the activation of the Ca²⁺-dependent ATPase activity of the *Dunaliella* enzyme is similar to the activation of higher (vascular) plant coupling factors. Over a relatively short period of time (several hours), the heatinduced Ca²⁺-dependent ATPase activity of the Dunaliella enzyme is irreversible. The Ca²⁺-dependent activity is, however, reversibly inhibited by ethanol, the presence of which changes the divalent cation specificity of the enzyme from Ca²⁺ to Mg^{2+} .

The effect of solvents on the activity of CF₁ can be rationalized by changes in the conformation of the enzyme, perhaps due to changes in the hydrophobicity of the solvent as in [8]. A simplistic model for this is shown in fig.3. The addition of solvents to the latent enzyme alters the conformation of the enzyme such that it can hydrolyze Mg-ATP (corresponding to a transition from state I to II). This is a reversible process as has been shown not only for the soluble *C. reinhardi* [9], *D. bar-*

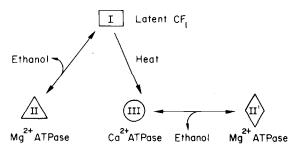


Fig. 3. A model for the heat- and solvent-induced Dunaliella CF₁ Ca²⁺- and Mg²⁺-dependent ATPase activities. I, II, II', and III represent different conformational states of the Dunaliella CF₁. The solvent-induced interconversion between states I and II and II' is reversible whereas the heat-induced conversion of state I to state III is irreversible. In state I, the enzyme is in an inactive conformation whereas states II and II' represent conformations of the enzyme that have Mg²⁺-dependent ATPase activity. In state III, the enzyme has Ca²⁺-dependent activity. For more details, see section 4.

dawil [10] and spinach [8] enzymes, but also for the spinach thylakoid membrane-bound CF₁ [13].

The heat treatment typically employed to activate a Ca²⁺-dependent ATPase activity with other coupling factors undoubtedly alters the conformation of the enzyme (see, e.g. [14]) (which corresponds to the irreversible transition from state I to III, fig.3). It is not clear what is occurring at the molecular level during the heat activation of the enzyme although it has been suggested that a rearrangement of disulfide bonds may be taking place [10,15]. Nevertheless, this conformational state of the enzyme can also be perturbed by the addition of solvents, the result being a change in the divalent metal cation specificity (corresponding to a transition from state III to II', fig.3).

We have unsuccessfully attempted to detect reversible, solvent-induced, conformational changes in CF₁ by measuring intrinsic fluorescence depolarization and the reactivity of CF₁ to a variety of covalent chemical modifiers. In many other studies, antisera directed against specific protein conformations have been used to detect protein conformational changes [16], and the results shown in fig.1 and confirmed in fig.2 strongly suggest that the various monospecific antisera directed against *C. reinhardi* CF₁ employed here do indeed detect solvent-induced conformational changes in *Dunaliella* CF₁.

An interesting question is the relationship between the conformations of CF₁ corresponding to states II and II' (fig.3). Further work will be necessary to clarify this point.

ACKNOWLEDGEMENTS

This research was supported in part by grants from the University of Wisconsin, College of Agricultural and Life Sciences and the National Institutes of Health (GM 31384). This work was initiated while B.R.S. was on sabbatical leave at the

Weizmann Institute of Science, Rehovot, Israel, and we are deeply indebted to Professor Mordhay Avron and Dr Uri Pick for their invaluable contributions. In addition, we thank Dr Sabeeha Merchant for making the many monospecific antisera available to us.

REFERENCES

- [1] Nelson, N. (1976) Biochim. Biophys. Acta 456, 314-338.
- [2] McCarty, R.E. and Carmeli, C. (1982) in: Photosynthesis: Energy Conversion by Plants and Bacteria (Govindjee, ed.) vol.1, pp.647-695, Academic Press, New York.
- [3] Vambutas, V.K. and Racker, E. (1965) J. Biol. Chem. 240, 2660-2667.
- [4] McCarty, R.E. and Racker, E. (1968) J. Biol. Chem. 243, 129-137.
- [5] Pick, U. and Bassilian, S. (1982) Biochemistry 21, 6144-6152.
- [6] Farron, F. and Racker, E. (1970) Biochemistry 9, 3829–3836.
- [7] Nelson, N., Nelson, H. and Racker, E. (1972) J. Biol. Chem. 247, 6506-6510.
- [8] Sakurai, H., Shinohara, K., Hisabori, T. and Shinohara, K. (1981) J. Biochem. 90, 95-102.
- [9] Selman-Reimer, S., Merchant, S. and Selman, B.R. (1981) Biochemistry 20, 5476-5482.
- [10] Selman-Reimer, S., Finel, M., Pick, U. and Selman, B.R. (1984) Biochim. Biophys. Acta, in press.
- [11] Finel, M., Pick, U., Selman-Reimer, S. and Selman, B.R. (1984) Plant Physiol., in press.
- [12] Wegmann, K., Ben-Amotz, A. and Avron, M. (1980) Plant Physiol. 66, 1196-1197.
- [13] Anthon, G.E. and Jagendorf, A.T. (1983) Biochim. Biophys. Acta 723, 358-365.
- [14] Cantley, L.C. jr and Hammes, G.G. (1976) Biochemistry 15, 9-14.
- [15] Ravizzini, R.A., Andreo, C.S. and Vallejos, R.H. (1980) Biochim. Biophys. Acta 591, 135-141.
- [16] Kabat, E.A. (1980) Methods Enzymol. 70, 3-49.